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ABSTRACT

Noble-metal/tin-oxide based catalysts such as Pt/SnO 2 have been shown to be

good catalysts for the efficient oxidation of CO at or near room temperature.

These catalysts require a reductive pretreatment and traces of hydrogen or water

to exhibit their full activity. Addition of Palladium enhances the activity of
these catalysts with about 15 to 20 percent Pt, 5 percent Pd, and the balance

SnO 2 being an optimum composition. Unfortunately, these catalysts presently

exhibit significant decay due in part to CO2 retention, probably as a
bicarbonate. Research on minimizing the decay in activity of these catalysts is

currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based

catalysts has been developed and is discussed in this paper.

INTRODUCTION

Pulsed CO2 lasers have several potential remote-sensing applications, both
military and non-military, which require long-life operation with high

conversion-efficiency and good power-stability. However, two problems are

potentially associated with such applications.

One problem is that the electrical discharge normally used to excite pulsed

CO 2 lasers generally decomposes some of the C02:

C02

Elec.

Disch.

CO + 1/2 02

*Now Erik J. Kielin
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This decomposition is harmful to long-life laser operation both because of the
loss of CO2 and because of the buildup of 02. The loss of CO2 results in a
corresponding gradual loss of laser power. The buildup of even relatively small
concentrations of 02 molecules can cause rapid power loss and even complete
laser failure. Although CO2 lasers differ somewhatin their tolerance of 02, it
is generally desirable to keep the 02 concentration below a few tenths of i
mole-percent. COhas no significant deleterious effect on laser performance at
moderate concentrations.

The second problem is that the atmospherecontains a significant
concentration, about 300 ppm, of common-isotopeCO2 (12C1602). If common-
isotope CO2 is used in a CO2 laser intended for atmospheric transmission, the
emission frequencies available to the laser will correspond to the absorption
frequencies of the atmospheric CO2 and poor transmission will result.

The solutions to these two problems are superficially quite simple: (1)
continuously remove02 as it is formed and replenish CO2 and (2) use someform
of rare-isotope CO2 (such as 12C1802, 13C1602,or 13C1802) in lasers intended
for applications involving atmospheric transmission so that the emission
frequencies of such lasers will differ from the absorption frequencies of
atmospheric 12C1602. Actual implementation of these two solutions, however, is
far from simple.

Removalof 02 and replenishment of CO2 can be achieved in certain applica-
tions simply by operating the laser open-cycle with a continuous flow-through of
fresh laser-gas and the consequent removal of dissociation products. However,
for space-based applications or other applications involving weight and/or
volume constraints, the amount of gas required for open-cycle operation would be
unacceptable and, instead, closed-cycle laser operation with recycling of the
laser gases would be imperative. Closed-cycle operation would also be highly
desirable for any applications where rare-isotope CO2 is used for enhanced
atmospheric transmission because of the expenseof the large volumes of rare-
isotope gas which would be required for flow-through operation.

Achievement of closed-cycle operation of pulsed CO2 lasers requires
catalytic recombination of the decomposition products, CO and 02 , to regenerate
CO2•

Cat.

CO + 112 02 ; CO 2

Candidate catalysts must have high efficiency at steady-state laser conditions

which are, generally, 25°C to I00°C and about one atmosphere of total pressure

with low partial-pressures of CO and 02 . Some excess CO may be added to the
laser-gas mixture but generally it is not. It is desirable that little or no

heating of the catalyst be required in order to minimize power consumption.

The catalytic oxiaation of CO to CO2 has been extensively studied at
various conditions for a number of catalysts. These include the noble metals

and various metal oxides (refs. 1 and 2) and the commercial catalyst, Hopcalite

(ref. 3), which is a mixture of CuO and MnO 2 plus small quantities of other

oxides. However, few catalysts have sufficiently high activity to allow opera-

tion at the low steady-state temperatures and low oxygen partial pressures

characteristic of typical pulsed CO2 lasers.
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The most promising catalysts studied to date, whose performance has been
verified by actual closed-cycle laser operation, consist of Pt and/or Pd on tin
(IV) oxide (refs. 4 and 5). A systemmatic study of (Pt, Pd)/SnO2 catalysts for
use with closed-cycle pulsed CO2 lasers, including the preparation and testing
of improved catalyst formations, has been in progress at the Langley Research
Center of NASA(LaRC) for the past several years (refs. 5-16). This study has
been expandedby joint research with investigators at Old Dominion University,
the University of Florida, the University of California, San Diego, and Science
and Technology Corporation (refs. I, 5-11, 13, 15-21).

TESTFACILITIES

Catalyst research at LaRCis carried out both in laboratory reactors and in
a commercial CO2 TEA laser.

Laboratory Reactors

Laboratory reactors are used for catalyst study under controlled condi-
tions. Several laboratory reactors are presently operational, most of which are
flow-through (plug-flow) reactors. In these reactors a test-gas mixture flows
through a reactor tube containing a catalyst sample which is situated in a
temperature-controlled oven. The gas which enters and exits the reactor tube is
quantitatively analyzed with either a gas chromatograph (GC) or mass spectro-
meter (MS) and from this analysis the amount of COand 02 converted to CO2 by
the catalyst sample is determined. For many tests the test-gas mixtures used
are purchased premixed in a high-purity He carrier, typically 1.00 percent CO
and 0.50 percent 02 plus 2.00 percent Ne (as an internal calibration standard
for gas analysis). For sometests the gas mixtures are blended in the
laboratory using high-purity componentgases and calibrated flow controllers.

All except one of the reactors are used with common-isotopegases and use
GC's for gas analysis. These GC's are fully automated so that tests with
common-isotopegases can be conducted in the flow-through reactors continuously
around-the-clock. Oneflow-through reactor is used with rare-isotope gases and
uses an MSfor gas analysis.

Studies performed in the flow-through reactors are (1) parametric studies
to determine the effect of such parameters as catalyst mass, temperature,
reactor residence-time, pretreatment conditions, etc., on the performance of a
given catalyst material, (2) comparison of different catalyst compositions (such
as Pt/SnO2, Pd/SnO2, and Pt + Pd/Sn02) and concentrations to determine the
optimum catalyst formulation, (3) long-term performance tests (using an
automated-GCreactor) to determine how a catalyst performs with long-term
exposure to the test gases, and (4) isotopic studies (using the MS reactor) to
determine the interaction of a given catalyst with rare-isotope gases.

A recirculating and a pulsed reactor are also available. In the recircu-
fating reactor a gas mixture is continuously recirculated through a
temperature-controlled reactor tube containing a sample of catalyst, and the
conversion of COand 02 to CO2 is monitored as a function of time. Gas analysis
is performed with a GC. This reactor is used to study the kinetics and
mechanismof catalysis for selected catalyst compositions.
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With the pulsed reactor, the single-gas or gas-mixture to be studied (in a
He carrier) is exposed to the catalyst sample in a series of discrete pulses.
The pulses are spaced in time such that the gas exiting the reactor after each
pulse can be analyzed by GC. The cumulative gain or loss of each species as a
function of time can thus be more finely resolved than with the continuous
flow-through and recirculating reactors. The pulsed reactor is used for both
reaction and chemisorption studies.

Laser Reactor

A Lumonics mode] TEA-820pulsed CO2 laser (7 Watt, 1-50 pulses/second) is
available for catalyst testing under actual laser operating conditions. The
laser is operated closed-cycle with an external catalyst bed (in a temperature-
controlled oven) and the results are comparedwith the open-cycle performance of
the laser at the sameflow rate. It is intended that ultimately the laser will
be operated with no heating of the catalyst other than by the laser gas. Gas
analysis is performed with a GCin current common-isotopetests. An MSwill be
used when the laser is operated with rare-isotope CO2.

RESULTS

The following results have been obtained in studies performed to date.

Common-lsotopeLaboratory Studies

(1) Pt on SnO2 (Pt/Sn02) has significantly higher catalytic activity for CO
oxidation than either Pt or SnO2 alone (ref. 5). The effect is clearly syner-
gistic and apparently involves separate but complementary roles for the Pt and
SnO2 phases.

(2) The efficiency of Pt/SnO2-catalyzed oxidation of COto CO2 is approximately
proportional to catalyst mass until complete conversion is achieved (ref. 5).

(3) The catalyst mass required to achieve complete oxidation of a given concen-
tration of COis roughly proportional to the flow rate of the gas through the
catalyst (ref. 7). This makespossible the extrapolation of results obtained
with laboratory reactors to CO2 lasers.

(4) A technique for achieving muchhigher Pt loadings than are commercially
available has been developed (ref. 16). Platinum loadings as high as 46 percent
have been achieved. All metal loadings given in this paper are percentages by
weight.

(5) The activity for COoxidation of Pt/SnO2 catalysts increases with Pt loading
until a maximumactivity is reached at about 17 percent Pt (Ref. 14). Since Pt
loadings between 11 percent and 17 percent and between 17 percent and 24 percent
were not tested, the precise optimum loading is somewhatuncertain but it is
believed to lie in the range of 15 to 20 percent.

(6) Addition of a small quantity of Pd to a Pt/SnO2 catalyst can enhance its
activity. For example, a catalyst consisting of i percent Pt and I percent Pd
(with the balance Sn02) has been found to be more active than a catalyst with
2 percent Pt and no Pd. For a catalyst with 15 to 20 percent Pt, the optimum Pd
loading is about 5 percent.
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(7) A reductive pretreatment enhances the activity of Pt/SnO2 catalyts relative
to no pretreatment or to pretreatment with 02 or an inert gas (Ref. 15). Pre-
treatment consists of a flow of the pretreatment gas (in a helium carrier, for
safety and convenience) over the cata]yst sample at an elevated temperature
prior to exposure of the catalyst to the reaction gas mixture at the selected
reaction temperature. Both COand H2 are suitable gases for reductive
pretreatment (Ref. 15); in this study they were used at a concentration of 5
percent in He.

(8) The temperature at which a Pt/SnO2 catalyst is pretreated can affect its
subsequent activity (Ref. 15). Pretreatment temperatures of 125°C, 175°C, and
225°C resulted in equal catalytic activity, for the catalyst tested, but
pretreatment at 100°Cyielded somewhatlower activity.

(9) Duration of the pretreatment also affects subsequent catalyst activity
(Ref. 15). Catalyst activity after a 20-hour COpretreatment was found to be
lower than after a 1-hour pretreatment. Too short a pretreatment also
diminishes catalyst activity. For optimum results the effluent gases from the
pretreatment should be analyzed and the pretreatment terminated when no signifi-
cant yield of oxidation product (CO2 or H20) is detected.

(10) Pretreatment of a Pt/SnO2 catalyst sample at elevated temperatures--above
about 125°C--results in an initial dip in catalyst activity before the steady-
state activity is achieved for studies in the flow-through reactors (Ref. 15).
No dip occurs if the catalyst is pretreated at lower temperatures. If the
catalyst is exposed to moisture following pretreatment but prior to exposure to
the reaction gas mixture, or if the reaction gas mixture is humidified, no dip
occurs (Ref. 15).

(11) In manycases moisture not only eliminates the initial dip in catalyst
activity, it also enhances the activity of the catalyst (Ref. 15). In fact,
addition of moisture has been shownto increase the activity even of an
unpretreated catalyst. As discussed in the following section, this is believed
to be due to conversion of surface oxides to more-active surface hydroxyls.

(12) No initial dip in catalyst activity has been observed in flow-through
reactor studies when the Pt loading exceeded 24 percent even at pretreatment
temperatures of 225°C. Nodip has been observed in studies in the recirculating
reactor at any Pt loading or pretreatment temperature.

(13) The activities of Pt/SnO2 catalysts exhibit somedecay with time. Initial
activity can be readily restored by outgassing the catalyst either by heating it
or by exposing it to an inert gas for about 2 hours. In either case,
restoration of activity has been found to be associated with outgassing of CO2
from the catalyst but decay in activity occurs again when COoxidation is
resumed. An additional long-term decay which is not associated with CO2
retention has also been observed. This decay is reversible by reduction of the
catalyst.

(14) The yield of CO2 for a given catalyst sample and set of reaction conditions
is increased by addition of 02 to a stoichiometric mixture of COand 02 and
decreased by addition of COto such a mixture (Ref. 22). The reaction has been
found to be approximate]y first order with respect to 02 concentration.
Determination of the reaction order with respect to COconcentration is
currently in progress. The true rate equation appears to be somewhatcomplex.
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Rare-lsotope Catalyst Studies

(1) Reaction of C180and 1802 on a common-isotopePt/Sn1602 catalyst yields
about 85 percent C1802and 15 _ercent C180160(Ref. 10). This concentration of
the mixed-isotope species C_o01o0is unacceptable.

(2) A technique has been developed for modifying the surface of common-isotope
Pt/Sn02 so that all reactive surface oxvaensjoare 180 _rref..vj.ln_Reaction of

C180 and 1802 over this modified catalyst yielded only C1802, within
experimental error, in a test of 17 days (Ref. 23).

(3) Rare-isotope studies have indicated that some sort of carbonate or

biocarbonate species is formed when CO is oxidized on Pt/SnO 2 catalysts (ref.
10).

Surface Characterization Studies

Extensive surface characterization studies have been performed by Hoflund and

coworkers at the University of Florida. These studies utilized an ultrahigh

vacuum system containing multiple surface techniques including ion scattering
spectroscopy (ISS), electron spectroscopy for chemical analysis (ESCA), Auger

electron spectroscopy (AES), and electron stimulated desorption (ESD) with

pretreatment capabilities at elevated pressures and temperatures. The following
results have been obtained:

(1) The surface hydrogen present at a polycrystalline tin oxide film has been

studied using ESD before and after annealing the film at 500°C (Ref. 17).

Annealing reduces the concentration of surface hydrogen by a factor of 8, and

energy analysis of the desorbing ions indicates that at least 3 chemical bonding

states of H are present at the surface. Further research is necessary to
elucidate the nature of these states.

(2) The reduction by vacuum annealing from 200 to 350°C of a platinized tin

oxide film has been examined using ISS, ESCA and AES (Ref. 18). The data show

that tin is reduced to metallic form which a11oys with the supported platinum.

(3) Since Pt/Sn alloys form in reduced Pt/Sn systems, it is important to

characterize the behavior of Pt/Sn alloys. As part of a continuing study of

Pt/Sn alloy surfaces, the reduction in H2 of an air-exposed Pt/Sn alloy surface

has been examined using ISS, ESCA and angle-resolved AES (Ref. 19). Initially,

a tin-depleted Pt-rich region is covered by a 3oA thick uniform layer of tin

oxide. During reduction, oxygen is removed from the surface forming metallic

tin and platinum migrates to the surface through vacancies left by the oxygen to
a11oy with the metallic tin.

(4) An unsupported commercial 2 percent Pt/SnO 2 catalyst has been examined using
ISS, AES, and ESCA as a function of pretreatment temperature (air exposed, 75,

100, 125, and 175°C) at 4 and 40 Torr of CO (Ref. 24). During the reduction the

O/Sn ratio is decreased, the Pt is reduced from platinum oxides to Pt(OH)2, the
surface hydroxyl group concentration is reduced, and a Pt/Sn alloy forms. This

is the same catalyst whose activity as a function of reductive-pretreatment

temperature is discussed in item (8) of the section on common-isotope studies.
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(5) A silica-supported Pt/Sn catalyst developed at NASAhas been characterized
before and after pretreatment at 125 and 225°C in CO(Ref. 20). The 125°C
reduction, which yields a highly catalytically active surface, converts the Pt
oxides primarily to Pt(OH)2. Reduction at 225°C produces a surface which is
much less active catalytically. The surface studies show that this is due to
coverage of the surface Pt by contaminant species, including silica, and
reduction of the Pt(OH)2 to metallic Pt.

Laser Studies

(1) The Lumonics Model TEA-820 laser has been operated closed-cycle with a
catalyst bed of 150 g of 2 percent Pt/SnO2 at 100°C (Refs. 5 and 8). The laser

achieved 96"56Percent10(± 3.5 percent) of steady-state open-cycle power for 28hours (1 x pulses at 10 pulses/second). Both the laser and catalyst were
fully operational at the conclusion of the test. Additional |aser tests are in
progress.

(2) Herz and coworkers at the University of California, San Diego, (ref. 21)
have developed a computer program which can be used to design catalyst monoliths
for specific laser applications. The critical information a user needs to
supply is the first-order-overall rate constant and activation energy for the
catalyst formulation of interest. After the user supplies other information
such as gas composition, gas flow rate and monolith dimensions, the program
computes the conversion of oxygen and pressure drop as a function of monolith
length. By varying input parameters, the user can investigate various design
alternatives. One conclusion of a design study performed with the program is
that standard off-the-shelf monoliths are not optimal for use in CO2 laser
applications. This is because standard monoliths have been designed for
combustion or emission control applications where reactions occur very fast at
high temperature and high gas flow-rates. Gas flow-rates in lasers are
relatively low and reactions occur at low temperatures and thus, are relatively
slow. Monoliths optimized for laser applications to provide for minimum
monolith size will have thicker layers of active catalyst material than
monoliths used for combustion and emission control. The computer program is
available through NASA'sCOSMICoffice.

PROPOSED MECHANISM

One result of the study described in the foregoing sections of this paper

is that several features of the mechanism of Pt/SnO2-catalyzed CO oxidation have
begun to emerge. Primary among these is the role of surface hydroxyl groups in

the oxidation of CO chemisorbed on Pt sites. Although much is still, at best,

uncertain or ambiguous and much else is simply unknown, it is now possible to
put forth, in some detail, a tentative mechanism which is consistent with a

broad range of experimental observations. This proposed mechanism, including

detailed reaction equations is presented in this section.

The experimental observations reported in the previous section suggest the

postulate that surface OH groups participate in the oxidation of CO chemisorbed
on Pt sites. Hoflund and coworkers have observed OH groups on both tin-oxide

and platinized tin-oxide surfaces (refs. 17 and 24). Reductive pretreatment of
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the catalyst enhances its activity but pretreatment at elevated tempera-

tures also dehydrates the catalyst surface and thereby depletes the
surface concentration of OH. The initial reaction which occurs when the

catalyst is exposed to the test-gas mixture further depletes the surface
concentration of OH and partially re-oxidizes the surface. This results

in the observed decline in catalyst activity. Rehydroxylation of the

surface, probably by migration of H (or H+) from the catalyst bulk,

eventually restores the catalyst activity. The sequential decline and

increase in catalyst activity results in the observed dip. If the OH

concentration at the catalyst surface is restored by humidification of

either the catalyst or the reaction gas no dip is observed. Humidifica-

tion of the catalyst surface may increase the OH concentration above the

initial value and the activity of the catalyst may then be enhanced as

reported in Reference 15.

Most of the CO 2 formed immediately desorbs from the Pt phase, but a

fraction of the CO 2 molecules interact with surface OH sites and are
retained, probably as bicarbonate. This bicarbonate eventually undergoes

decomposition, but until such decomposition occurs, the chemisorbed-C02/
bicarbonate species ties up OH sites and, thus, contributes to the

observed decay in catalyst activity. Outgassing of the chemisorbed CO 2
restores the catalyst activity, as observed.

An equation set which represents the foregoing proposed mechanism is

Pretreatment

(1) HOSnO x + Reduction _ Sn + HOSn

(2) HOPtOy + Reduction _ Pt + HOPt

The surface of the "tin-oxide" and "platinum" phases of platinized

tin-oxide consists of complex hydroxy oxides which are represented here as

HOSnO x and HOPtOw, respectively; following reduction some Pt and Sn
are formed which-are present predominantly as a PtSn a11oy with some

surface hydroxyl groups (refs. 18-20).

Chemisorption

(3) 02(g ) + PtSn _ 02.PtSn Rate Determining Step

(4) CO(g) + Pt _ CO-Pt Fast

CO chemisorbs readily on Pt but does not chemisorb significantly on Sn,

whereas 02 chemisorbs on both Pt and Sn (ref. 25). It is assumed herein
that these chemisorption properties hold for the Pt and Sn atoms of the

PtSn alloy as well as for the individual metals. Although 02 can chemi-

sorb on Pt, it is not normally significantly present on room-temperature

Pt surfaces when CO is also present; this is because of the relatively low

sticking coefficient of 02 on Pt as well as the fact that each 02 molecule

requires a pair of adjacent vacant surface sites whereas CO molecules

require only individual vacant sites (ref. 1). We suggest that the

presence of Sn atoms in the PtSn a11oy component of prereduced platinized

tin-oxide significantly alters this situation. Because each Pt atom of
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the PtSn alloy is surrounded by Sn atoms which can chemisorb 02 but not

CO, 02 molecules can compete with CO molecules for chemisorption on vacant
Pt atoms with adjacent Sn atoms providing the necessary second sites.
However, because of the higher sticking coefficient of CO on Pt, surface

coverage by CO will still exceed that by 02 for CO:O 2 ratios anywhere near
stoichiometry. In fact, chemisorption of 02 probably is the rate limiting

step of this reaction set.

CO Oxidation

(5) CO.Pt + HOSn + Bulk _ C02(g) + Sn + H.Bulk

We propose that chemisorbed CO is oxidized predominately by surface

hydroxyls rather than by oxygen atoms. This is analogous to the situation

in the gas-phase oxidation of CO (ref. 1) and is consistent with the

results presented in the previous section.

Hydrogen Exchange

(6) Pt + H.Bulk _ H°Pt + Bulk

It is assumed that hydrogen (possibly as H+) is relatively plentifu} in

the prereduced catalyst and that it exchanges readily between the bulk and

the surface, preferentially at Pt sites.

Surface Rehydroxylation

(7) 02°PtSn + H°Pt _ HOSn + OPt + Pt

(8) OPt + Sn _ PtOSn Fast

Although the oxidizing species, HOSn, is regenerated by equation (6), the
surface is also reoxidized--and, thus, deactivated--by this step. This is

probably the cause of the downward portion of the initial dip in activity

when the catalyst has been dehydrated during pretreatment. It is possible
that surface reoxidation can be partially undone by

(9) H°Pt + PtOSn _ 2Pt + HOSn

However, the experimental data suggest that conversion of surface oxide to

surface hydroxyl is most readily accomplished by reaction with water:

(10a) PtOSn + H20°Surface _ HOPt + HOSn + Surface Fast

or

(lOb) PtOSn + H20(g ) _ HOPt + HOSn Fast

Although water may conceivably migrate from the catalyst bulk to the

surface to allow the catalyst to come out of the initial dip in activity

via equation (lOa), it is more likely that the migrating species is H (or

H+) yielding surface H20 via

(11) HO,Surface + H.Bulk _ H20.Surface + Bulk
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Of course, if water is supplied continuously by humidifying the reaction
gas mixture, OHgroups are continuously regenerated by equation (lOb) and
no dip in activity occurs; in fact the activity maybe enhanced somewhat,
as observed (Ref. 15).

Bicarbonate Formation and Decomposition

(12a) CO.Pt + 2HOSn+ Bulk _ Pt + HCO3Sn+ Sn + H.Bulk

or

(12b) CO.Pt + 2HOSn + Bulk _ HCO3Pt + 2Sn + H.Bulk

Although the oxidation of chemisorbed CO normally proceeds with the

immediate release of C02(g ), as in equation (5), bicarbonate formation can

occur as in equation (12a) or (12b) when two HOSn groups are adjacent to a
chemisorbed CO. It is not known whether the bicarbonate group is on a Pt

on an Sn site; either would effectively deactivate the catalyst. It is

possible that bicarbonate formation can occur by reaction of surface

hydroxyl with gas phase C02:

(13a) C02(g ) + HOSn _ HCO3Sn

or

(13b) C02(g ) + HOPt _ HCO3Pt

However, experimental data indicate that CO 2 retention by the catalyst is

relatively insensitive to the gas phase concentration of CO2 in most

cases. It is not yet known whether bicarbonate decomposition is thermal
or caused by reaction with surface hydrogen. Nevertheless, it is clear
that a steady-state eventually is attained in which bicarbonate is formed

at the same rate at which it is decomposed. This steady-state then limits
the effective activity of the catalyst to a value about half of its

activity if no bicarbonate buildup occurred. In addition to the fairly

rapid loss of activity due to bicarbonate buildup, some sort of slow
morphological change further deactivates the catalyst with a half-life of
several months.

The foregoing mechanism admittedly is speculative in many ways. It

is likely that it will require modification in some (perhaps many)
details. Nevertheless, it is consistent with all experimental data

currently available and it offers a point of departure for future studies
of Pt/SnO2-based catalysts. It is presented for consideration in this
context.

CONCLUDING REMARKS

Noble-metal/tin-oxide based catalysts such as Pt/SnO 2 have been shown
to be good catalysts for the efficient oxidation of CO at or near room

temperature. They are the most promising catalysts for use in closed-

cycle pulsed CO2 lasers whose performance has actually been verified by
tests in such lasers. The catalysts require a reductive pretreatment and

traces of hydrogen or water to exhibit their full activity. Addition of
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Palladium enhances the activity of these catalysts with about 15 to 20 percent
Pt, 5 percent Pd, and the balance SnO2 being an optimum composition.
Unfortunately, these catalysts presently exhibit significant decay due in part
to CO2 retention, probably as a bicarbonate. Research on minimizing the decay
in activity of these catalysts is currently in progress. A proposed mechanism
of COoxidation on Pt/SnO2-based catalysts has been developed and is discussed
in this paper. The mechanism,although somewhatspeculative, is consistent with
experimental results obtained to date.
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